2023年8月17日,欧盟电池与废旧电池法规(EU)2023/1542正式生效,并于2024年2月18日起开始实施。法规旨在促进电池全生命周期的可持续性,并对可再生材料的回收提出了严格要求。

  该法规中引人注目的一点,是自 2027 年起,动力电池出口到欧洲需要持有符合标准要求的“数字护照”。法规内容显示,“数字护照”用以记录电池的制造商、材料成分、技术规格、碳足迹和供应链等信息。

  此外,《欧盟电池和废电池法规》(以下简称《电池法规》)将产品分为汽车电池、电动汽车电池、轻型交通工具电池、工业电池、便携式电池,对电池整个生命周期的各阶段提出了有关要求,涵盖原材料生产加工、电池使用的过程及废旧电池回收。

  与《欧洲绿色协议》的循环目标一致,《电池法规》是欧洲第一部采用全周期方法的立法,其中涵盖了采购、制造、使用和回收。

  今年 1 月 18 日在瑞士举行的达沃斯世界经济论坛上,全球电池联盟(GBA)首次发布了“数字护照”概念验证成果。据称,“数字护照”是促进快速扩大可持续、循环和负责任的电池价值链的关键,由全球电池联盟(GBA)的成员历时三年制定,该护照的最终目标是为用户更好的提供电池可持续性表现的质量保证。

  《电池法规》适用于以下所有类型的电池,并根据电池质量及使用对象分为以下五类:

  指密封的、质量小于或等于5kg的,非设计专供工业用途的,既不是电动汽车电池也不是轻型交通工具电池也不是SLI电池。

  指设计为启动、照明或点火提供电力的任何电池,也可用于车辆、其他运输工具或机械的辅助或备用目的。

  指任何密封的、质量小于或等于25kg的,旨在为轮式车辆提供牵引力的电池,包括法规(EU) No 168/2013定义的L类车辆,但不包括电动汽车电池.

  指设计为法规(EU) 2018/858 定义的M、N和O类混合动力或电动汽车提供牵引力的任何电池;或质量超过25kg的,设计为法规(EU) No 168/2013定义的L 类车辆提供牵引力的任何电池;

  指任何专门为工业用途设计的电池,或任何经过准备再利用后用于工业用途的电池,以及质量超过5kg的,除LMT电池、电动汽车电池和SLI电池外的其他电池。

  《电池法规》对包括轻型交通工具电池(LMT)、容量大于2 kWh的可充电工业电池、电动汽车电池提出碳足迹要求,首先要求碳足迹信息的披露,接着进行分级,最后设定碳足迹强制性限值。

  《电池法规》对电动汽车电池、容量大于2kwh工业电池(除外存储)、SLI电池、LMT电池提出再生原材料要求,首先要求在随附文件中披露再生原材料含量,然后设定再生原材料限值,具体实际的要求如下:

  《电池法规》要求便携式电池、内部存储及容量大于2kwh的可充电工业电池、电动汽车电池、LMT电池满足电化学性能参数标准或者需要在随附文件中包含相关参数,具体实际的要求如下:

  固定式电池储能系统(Stationary battery energy storage systems)应在随附的技术文档中说明其在正常运行和使用期间是安全的,并包括其通过新法规草案附件V所列11项安全参数的证据。

  电动汽车电池、固定时电池储能系统和LMT电池应包括一个用于决定电池健康和预期寿命状态(欧盟电池法案附件VII中所列)数据的电池管理系统。

  法规生效之日起36个月后,不同电池需附有含有不同信息的标签,包括以下2点内容:

  基础信息:所有电池附有含电池基本信息的标签,包括制造商信息,电池类型,化学组成,除铅、镉、汞以外的其他有害于人体健康的物质,关键原材料等10项内容;

  容量信息:可充电便携式电池,LMT电池和SLI电池应在标签上标明容量信息,且不可充电的便携式电池还应标明最小平均维持的时间且标有“不可充电”。

  所有电池含镉超过0.002%或含铅超过0.004%的电池应在分开收集符号下方标注超限物质的化学符号;所有电池在投放市场前加贴CE标记。

  法规生效之日起42个月后电池应附有二维码,不同电池对应不同信息权限的访问:

  其它电池:标签、标记、合格声明、尽职调查报告、关于预防和管理废电池的信息;

  SLI电池:从废物中回收的钴、铅、锂或镍以及在电池活性物质中存在的数量。

  法规生效之日起42个月后,投放市场或投入到正常的使用中的LMT电池、容量大于2kwh的工业电池和电动汽车电池应具有电子记录,即数字护照。

  电池法规第11条便携式电池和LMT电池的可拆卸性与可更换性中提到“将包含便携式电池的产品投放市场的任何自然人或法人应确保最终用户在产品的常规使用的寿命期间可以每时每刻拆卸和更换这些电池”。法规将“便携式电池”定义为“密封的、重量不超过5公斤、非专门为工业用途设计的电池,既不是电动汽车电池、LMT电池,也不是SLI电池”,其范围涵盖笔记本电脑、手机、游戏机等多种类型的电池。这在某种程度上预示着目前欧盟市面上大部分手机和平板电脑的设计方式将迎来巨大转变。容易打开的手机需要用垫圈和连接器,这使得手机更厚更不耐用,更难防水或防尘。苹果、三星、小米、OPPO等智能手机制造商都将产品出口欧洲,可能会被迫增加成本来改变手机设计,尤其是可折叠手机,改变设计使电池更加容易更换可能更加困难。

  以苹果为例:苹果旗下的大多数产品, iPhone、iPad、MacBook、Apple Watch,甚至 Apple Vision Pro都包括在法规影响区域之内。MacBook在2009年以后就变为了内置电池,电池实际上粘在MacBook的框架中,更紧凑安全,并可以使电脑越来越薄,但这样的电池用户是无法自己拆卸的。Apple Watch 也许可以争取获得豁免,因为法规中有规定“专门设计用于主要在经常受到水溅、水流或水浸的环境中运行,并且可清洗或可冲洗的设备”可以只能由独立专业人员拆卸和更换。而对于 iPhone 和 iPad 而言,如需满足规定则其设备的厚度和重量都会发生变化,防水性能也可能受到影响。

  电池法规还将对Switch、Steam Deck等游戏机产品带来很大影响。虽然电池法规仅适用于欧盟国家,但正式生效后很可能影响全球的游戏手持设备,因为任天堂等公司大概率会出于成本考虑统一更换全球的Switch和Steam Deck后续产品。

  近年来,新能源汽车动力电池系统一直在致力于提高系统集成度,由传统的“电芯-模组-电池系统“(CTM)集成方式,向电池无模组技术(CTP)、电池车身一体化(CTB)和电池底盘一体化(CTC)方向发展。

  电池无模组技术(CTP)直接将电芯集成为电池包,再把电池包作为整车结构的一部分集成到车身底板上,这样可以减少不必要的材料和重量,使能量密度提升10%-15%,体积利用率提升15%-20%。电池车身一体化(CTB)则在CTP的基础上优化电池包上盖结构,使电池包上盖替代地板,实现电池包与车身的一体化集成。电池底盘一体化(CTC)则是一体化电动智能底盘技术,电芯在车体边梁与横梁之间进行布局。这些技术大大提升了电池系统的集成程度,却给电池的再回收利用带来挑战。

  电池无模组设计(CTP)通常会使用结构粘合剂或者封装泡沫,这样使得电池组的拆卸变得非常困难,如果发生故障则需要完全更换电池组。与电池无模组设计(CTP)相比,电池车身一体化(CTB)和电池底盘一体化(CTC)设计在后期回收时由于需要从车上拆除作为车辆结构的电池组,其拆卸成本会更高。有一种回收方法是压碎电池并过筛,将较大颗粒与较小颗粒分离,小颗粒中有高价值的电极材料;然后使用湿法冶金进一步处理黑色物质,以电池级金属盐的形式回收锂、钴、镍等。理想情况下这种回收过程从电芯层级进行,以便所得到的黑色金属具有更高比例的关键金属。也有厂商选择直接把电池组研磨碾碎,这样虽然在前期可以用更低的设计和制造成本去制造电池,但后期的回收提取会比较困难,导致锂、钴、镍等金属回收效率不高。

  除了拆解回收以外,电动汽车电池还可进行梯次利用。梯次利用主要针对电池容量降低至80%以下的电池,其典型应用为储能领域,如风光储能、削峰填谷、备用电源等。大多数梯次利用电池厂商会选择在电池模组层级集成电池,以避免需要将其分解成电芯的复杂过程。但如果需要拆卸到电芯级别,以挑选性能最佳的电芯进行再利用,则电池无模组设计(CTP)比其它两种系统设计更具优势。

  如上文所述,欧盟电池法规对电池活性材料中所含回收材料的百分比,以及对废旧电池可再生材料的回收水平都有很高的要求。当目前市面上的电动汽车电池组达到使用寿命时,回收这些系统高度集成的电池组将会带来较大的工作量。较有潜力的一个突破方向是设计出不伤害电芯的溶剂、粘合剂和密封剂,降低电池组拆解的难度。

  法规对电池活性材料中所含可再生材料(钴、锂、镍、铅)的比例要求很高,且生产者(制造商、进口商、分销商)在电池首次投入市场的成员国要负责废旧电池的收集。为了满足最低回收含量的要求,制造商会大力加强对有价值废弃物的控制力度,未来电池回收数字化也许会成为一个趋势,生产者可对电池产品状态进行定期监测及管理,帮助其更好地做出决策,甚至延伸企业服务链。如果废料供应不足,一些厂家将被迫采购额外的回收材料。由于市面上回收材料有限,大量的需求可能导致价格上涨。如果满足不了法规对回收材料的最低要求,我国电池企业将面临产品无法出海的风险。同时,履行生产者延伸责任(EPR),建立废旧电池的回收收集系统对于制造商而言也是一项挑战,尤其是新进入行业的厂商更是面临很大的开发成本。法规中提到生产者可以将收集义务外包给生产者责任组织(PRO),也就是专业的废弃产品回收、处理、循环利用的团体,降低生产企业回收和收集废弃电池的难度及成本,预计未来废弃电池收集处理的领域将会有大量需求。此外,法规还要求电池需满足碳足迹的相关要求,要依照规定的计算方法提供碳足迹报告,标明碳足迹性能等级,而且要低于规定的碳足迹最大阈值。这就要求从原材料获取及预处理(采矿等)、运输材料到电芯制造、电池组装等所有包含在系统边界之内的生命周期阶段都需要进行碳足迹核算以及节能降碳工艺优化。由于每个LMT电池、大于2kWh的工业电池,电动汽车电池都应配有数字护照,电池供应链上下游主体都需配合提供诸如碳足迹、责任采购、可再生成分比例、电池材料成分、性能及耐久性参数等信息。

  我国资源丰富,锂、钴上游资源依赖进口,中游加工产能充足,目前欧盟97%的锂,60%的钴均来自中国。于2023年3月16日出台的欧盟《关键原材料法案》直接指出欧洲地区在部分关键原材料的供应上对中国的依赖度过高,需要减轻与此类战略依赖相关的供应链风险,以增强其经济弹性。《关键原材料法案》为原材料供应链的欧盟内部产能设定了明确的基准,其中加工至少占欧盟年消费量的40%,回收至少占欧盟年消费量的15%;且欧盟在任何相关加工阶段对每种战略原材料的年消耗量,来自单一第三国的比例不超过65%;条例还提出通过创建可回收关键原材料的价值链来提高关键原材料的循环性和有效利用的措施,旨在将战略性材料留在欧洲范围内。《关键原材料法案》提出了对材料供应及回收的需求,电池法规则将其具化为对电池行业的各种法规要求,对电池收集及回收材料的种种要求推动企业完成材料相关的各种举措。(此外,虽然目前未被包含在电池法规的管控范围以内,石墨也被欧盟委员会视为战略优先事项。石墨约占电池材料的 50%,预计对石墨的需求到2050年将增长14倍。欧盟电池中使用的特定石墨大部分来自中国,而且在欧盟内部还没有开始回收)

  法规规定销售可充电工业电池和电动汽车电池的经济运营商需要对锂、钴、石墨、镍和其它化合物的供应链进行尽职调查的义务,需建立原材料供应链管理体系,并由第三方出具调查报告,保证原材料供应链的可追溯性和透明性,这些都需要电池上游材料供应商的配合。上游材料供应商将提高清洁能源的使用比例,采用创新技术降低碳排。如贵州的振华义龙新材料有限公司,打造了贵州首家正极材料“零碳工厂“,通过使用绿色电力、工业废水再利用、节能设备等方式减少碳排。此外,欧盟关键原材料法规及电池法规的发布旨在加强跨大西洋联盟,在关键原材料上降低对中国的依赖,我国材料产业在加快资源开发、提升加工产能的同时,也要积极建立全球范围内的产业链,进一步开拓市场。

  由于数字护照、碳足迹等要求,上下游企业的供应链管理、信息精确和追溯以及链条上各个环节企业的合作愈发重要,融合“生产端-应用端-回收端”的商业合作新模式将很有可能出现。集矿产、正、负极生产、电解液、铜/铝箔、材料回收,低碳服务等一系列产业链企业的新型产业园将大大提升企业应对电池法规的能力,降低风险。

  目前电池回收商面临的一大瓶颈是很难准确评估电池剩余寿命及合适的回收价格,欧盟电池法规规定了电池的健康状况信息可以由公开渠道获得,将帮助回收商判断电池的真实状况从而做出决策。电动汽车电池是回收商面临的另一个难题,不仅拆解难度大,而且不同车型电池设计不同,没有可普适所有车型的电池拆解流水线。预计未来更利于回收和拆解的产品设计将会更受欢迎;电池回收的智能化、机械化可能会是下一步的发展方向。

  为了应对欧盟电池法规等一系列国际碳壁垒,多个电池行业龙头企业已开始行动。宁德时代规划到2025年全部电池工厂成为零碳工厂,到2035年实现全价值链碳中和,其生产的电池将全部为零碳电池。宁德时代将通过四大创新体系,在矿、大宗原材料、电池材料、电芯制造、电池系统五大关键节点实现技术降碳,完成全价值链降碳。通过广泛应用可持续发展透明度审核工具CREDIT,实现高效供应链管理。2019年10月,宁德时代在宜宾投建全球首家电池零碳工厂,总投资超过 500 亿元,项目规划 10 期,全部建成后,年产能可突破 200GWh,是一座世界级的电池制造基地。工厂通过水电能源、绿色能源管理(CFMS智慧厂房),绿色制造(废料贵金属回收),物流交通,碳交易等多种方式达成零碳目标。

  蜂巢能源于2022年在四川达州投建全绿电“源网荷储”一体化锂电零碳产业园,预计可实现年产值630亿元。亿纬锂能通过绿电采购、屋顶光伏、水光储调峰、供应链减排等方式进行降碳,预计2026年将建成超过200GWh零碳电池产能。远景动力于2022年底已实现全球业务运营碳中和,目标2028年实现全价值链的碳中和。

  上一篇:品英Pickering将在中国汽车测试及质量监控博览会演示电池管理系统测试系统及相关技术

  12月24日,孚能科技与吉利科技集团有限公司(以下简称“吉利科技”)签订战略合作协议,双方将共同推进动力电池产能的建设,从事电芯、电池模组及电池包研发、制造及销售,提升双方在各自领域的核心竞争力和可持续发展能力。副市长胡聚文见证签约,区党工委书记陈水连出席并致辞,区领导郭声琪、刘群英、吴汉波等参加。 陈水连在致辞中表示,吉利科技集团与孚能科技签署战略合作协议,是赣州新能源汽车产业发展史上的一件喜事,代表着孚能科技的实力和前景再次获得知名车企的高度认可。希望孚能科技以本次签约合作为新的起点,进一步深化与吉利汽车等知名车企的合作,不断提升产业竞争力和市场占有率,深耕赣州、走向全球。希望合作双方把握机遇、乘势而上,尽

  做为电动车的核心—动力电池的安全一直是电动汽车的难点与重点,谁掌握了动力电池管理技术,谁就掌握了未来电动汽车市场。本文介绍了品佳集团以Infineon高性能16位MCU XC164为平台,辅以AMS高精度、零温漂的动力电池电流检测芯AS8510的动力电池管理系统(BMS)解决方案。 一、 动力电池BMS(电池管理系统) 二、 电池管理系统主要有三个功能: 1. 实时监测电池状态。通过检测电池的外特性参数(如电压、电流、温度等),采用适当的算法,实现电池内部状态(如容量和SOC等)的估算和监控,这是电池管理系统有效运行的基础和关键; 2. 在正确获取电池的状态后进行热管理、电池均衡管理、充放电管理、故障报警

  引言:去年写过一篇文章《24度电起步的BMW PHEV》,最近通过整理BMW的技术资料可以发现从第三代到第四代,BMW做了以下的革新: 1) Gen 4的海外版本,从26Ah的PHEV1的电池升级到34Ah,在5系&7系上面没有改变模组数量,在X5上增加了模组数量 2) 配电盒方面改进了接触器和熔丝等配置,适应更大的电流 3) BMS的通信模式,从CAN通信更换到引入了部分的菊花链通信 01 Gen3到Gen4的主要更改 如前所述,在模组数量没有改变的条件下,电量是从9.2kWh升级到12kWh,其他大部分的参数都没有特别大的变化。 图1 5系PHEV国外版本的电池升级 而在内部如

  技术 /

  摘要: 动力电池是新能源汽车的核心部件之一,它的安全性和稳定性对于电动汽车的动力性能至关重要。CAN-bus通讯则在其中扮演着重要角色。那么,如何高效的完成动力电池的充放电测试呢? 为响应国家“碳中和”与“碳达峰”的目标,新能源电动车必将是大势所趋,各大车企如火如荼的展开了角逐,造成现在“百家争鸣”的景象。前不久,某科技企业在发布会上启动了造车计划。谁能想到,一家科技公司,轰动了整个汽车行业。 互联网科技公司造车的背后,其实就是新能源电动汽车蓬勃发展的表现。动力电池领域已成各大电池制造厂商必争之地。如此,动力电池的稳定以及安全,便成为了评判电动汽车安全性及动力性能的重要标准之一。 CAN-bus通讯在汽车电子中一直是霸

  测试必备解决方案 /

  “国内新能源汽车市场出现井喷式增长,直接结果是导致国内众多电池企业紧锣密鼓地扩大产能,从目前的情况来看,动力电池也许会与传统汽车一样面临产能过剩问题,” 在近日举行的中国新能源汽车东里电池材料高峰论坛上,中国汽车技术研究中心总工程师黄永和语出惊人。   当下的情况是,前8个月我国新能源汽车同比增长达4倍,车企四处争抢电池资源,黄永和的话是否危言耸听呢?《证券日报》调查所知,当下主流新能源汽车生产企业所需单体电池均采购自外资企业或中外合资企业。中国电动汽车百人会成员、重庆长安新能源汽车有限公司总经理任勇曾向记者表示,国内企业和国外企业都拿单体电池来做检测,可能国内企业单体电池质量还更好。但是,“我们整车企业要用的话,国外的好。为什

  (1)电池的开路电压 (2)电池的内阻 (3)电池的工作电压 (4)充电电压 充电电压是指二次电池在充电时,外电源加在电池两端的电压。充电的基本方法有恒电流充电和恒电压充电。一般采用恒电流充电,其特点时在充电过程中充电电流恒定不变。随着充电的进行,活性物质被恢复,电极反应面积不断缩小,电机的极化逐渐增高。 (5)电池容量 电池容量指从电池获得电量的量,常用C表示,单位常用Ah或mAh表示。容量是电池电性能的重要指标。电池的容量通常分为理论容量、实际容量和额定容量。电池容量由电极的容量决定,若电极的容量不等,电池的容量取决于容量小的那个电极,但决不是正负极容量之和。 (6)电池的贮存性能

  来自上海证券报的报道称,由北京卫蓝新能源科技有限公司(简称“卫蓝新能源”)牵头承担的国家重点研发计划“ 新能源汽车 ”重点专项“高比能长寿命原位固态化动力 锂离子电池 ”项目启动会暨实施方案论证会近期在京召开。 中科院物理所研究员、卫蓝新能源首席科学家李泓表示,北京卫蓝新能源开发了高单位体积内的包含的能量的混合固液 动力电池 。这种 电池 今年将在湖州工厂开始大规模生产,目前比能量超过360Wh/kg,安全性明显提升。李泓表示,这应该说是即将量产的全球最高能量密度的动力电池。 在固态电池开发的历程中,李泓等认识到直接开发全固态电池还是存在着比较多的挑战。中国已经掌握了这方面的知识产权,从自主可控的角度,更需要去发展氧化物和原位固态化。“

  动力电池行业关于成本问题有一个共识:只有当电池成本低于100美元/kWh以下时,纯电动汽车全面盈利才成为可能。下面就随汽车电子小编共同来了解一下相关联的内容吧。 在那之前,某些细分市场的电动汽车将“持续亏损”。近日,奥迪研发高级副总裁Peter Mertens博士意外披露奥迪的电池采购成本已达到100欧元/kWh(114美元/kWh),依靠电池成本优势大肆扩张的特斯拉优势已经消失殆尽? 奥迪研发高级副总裁Peter Mertens博士 奥迪已经公布了其电气化战略,预计奥迪首款纯电动SUV e-tron quattro将于2018年底上市。Mertens上周接受了德国媒体的采访,在谈到奥迪电动汽车的电池成本问题时表示: “我们

  管理系统BMS关键技术

  管理系统核心算法

  TI BMS动力电池管理技术- Power tools, ebikes, LEVs

  有奖直播 是德科技 InfiniiMax4.0系列高带宽示波器探头新品发布

  MPS电机研究院 让电机更听话的秘密! 第一站:电机应用知识大考!跟帖赢好礼~

  ADI世健工业嘉年华——深度体验:ADI伺服电机控制方案

  『新品发布』共模重磅推出可替代TI的TPS74401高精度低噪声3A LDO高端电源芯片

  『共模半导体』推出高精度低噪声3A LDO稳压器GM1203B系列,GM1203B系列新产品集低噪声、高PSRR和高输出电流能力等特性于一体,很适合为高 ...

  意法半导体智能执行器 STSPIN 参考设计整合电机控制、传感器和边缘人工智能

  2024 年 1 月 23 日,中国意法半导体的EVLSPIN32G4-ACT边缘 AI 电机驱动参考设计基于STSPIN32G4智能三相电机驱动器,能够降低智 ...

  摘要在无线收发器等应用中,系统一般处于偏远地区,通常由电池供电。由于鲜少有人能够前往现场进行干预,此类应用必须持续运行。系统持续无 ...

  据《中国电子报》报道,目前国内功率半导体企业,纷纷在宽禁带半导体产品上发力。国内主要的半导体企业均在积极布局低碳产品线,不断加大低 ...

  Bourns 推出具有变革性 EdgMOV™ 压敏电阻系列 提供节约空间的浪涌保护解决方案

  Bourns® EdgMOV™ 压敏电阻采用单一外观尺寸,提供多款型号选项,让设计人员能够缩小其浪涌保护方案的尺寸或加强其保护效果2024年1月18 ...

  英飞凌推出适用于DC-DC POL应用且内置快速COT架构的12 A和20 A同步降压稳压器

  致瞻科技采用意法半导体碳化硅技术,提高新能源汽车电动空调压缩机控制器能效

  大联大诠鼎集团推出基于Innoscience产品的1KW DC/DC电源模块方案

  EPC GaN FET可在数纳秒内驱动激光二极管,实现75~231A脉冲电流

  CPS16-LA00A10-SNCSNCWF-RI0BCVAR-W1072-S

  贸泽电子开售面向便携式电子应用的英飞凌EZ-PD PMG1-B1 USB Type-C高压微控制器

  『新品发布』共模重磅推出可替代TI的TPS74401高精度低噪声3A LDO高端电源芯片

  全球最新突破!液态金属存储器 FlexRAM 公布:清华大学开发,氧化还原模拟二进制

  美芝、威灵携一站式全场景暖通制冷解决方案闪耀AHR Expo 2024

  意法半导体智能执行器 STSPIN 参考设计整合电机控制、传感器和边缘人工智能

  免费申请评测:1.3元起的国产USB和Touchkey单片机CH554评估板

  站点相关:分立器件转换器稳压稳流数字电源驱动电源模块电池管理其他技术宽禁带半导体LED网络通信消费电子电源设计测试与保护逆变器控制器变压器电源百科电源习题与教程